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Abstract: Simulation of space missions at various stages of their preparation and implementation is 
essential. Possibilities for application of detailed models for presentation of various aspects of prepared 
experiments are created with development of computer technologies and the advent of multi-core processors. 
More versatile and more detailed computer simulations of space missions require the development and 
implementation of appropriate software for more efficient use of multicore processors. 

The application of computational threads is convenient approach to perform parallel computing. The 
"pool of threads" is a means for dynamic scheduling of calculations when solving irregular computational 
problems, related to complex calculation models, which vary in the course of simulation time. This programming 
model achieves optimal distribution of tasks among the threads, which assure high efficiency of computing 
systems. 

Variants of "pool of threads" model for developed solvers are realized. An unified approach and program 
realization which are applicable in a variety of solvers are proposed in the present work. A simplification of the 
program code by development of complex program systems which include different solvers is attainable by this 
approach. This achieves a simplification of the programming code when develop complex software systems 
including various solvers. 
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Резюме: Симулацията на космически мисии на различни етапи от тяхната подготовка и 

провеждане е от съществено значение. С развитието на компютърните технологии и навлизането 
на много-ядрените процесори се създава възможността за прилагане на детайлни модели за 
представяне на различни аспекти, системи (подсистеми)  протичащите процеси. По-разностранното 
и по-детайлно описание на реалните елементи на космическите мисии и компютърното симелиране 
изисква разработката и прилагенето на съответни програмни средства за по-ефективното 
използване на многоядрените процесори. 

Прилагането на изчислителни тредове е удобен подход за извършване на паралелни 
изчисления. Моделът “пул от тредове” е средство за динамично планиране на изчисленията при 
решаване на нерегулярни изчислителни проблеми, свързани с модели сложността на  изчисленията по 
които се менят в симулационното време. С този програмен модел се постига оптимално 
разределение на задачите по тредовете с което се поддържа висока ефектимност на 
изчислителните системи. 

Разработени са варианти на модела “пул от тредове” за разработените досега солвери. В 
настоящата работа се предлага единен подход и програмна реализация която е приложима при 
различни солвери. С това се постига упростяване на програмния код при разработка на сложгни 
програмни системи включващи различни солвери. 
 
 

Introduction 
 

Computer simulations are important tool for design at different stages of space mission 
preparation and implementation [1, 2]. The modern solution of different kinds of problems demands 
detailed simulations and a lot of computer time. 
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The present development of computer technologies provides great possibilities for access to 
power multi-core processors. The use of these processors requires previously developed and 
appropriately parallelized an algorithms. 

Parallelization based on threads is applied to problems having large dimensions. An effective 
control and dynamic scheduling of parallel calculations is achieved through application of pool of 
threads program model [3]. 

Algorithms and program tools for space mission end experiments simulation are under 
development at branch of SRTI, BAS in Stara Zagora. Parallel ordinary differential equation system 
integrator for satellite orbits propagation [4] and parallel satellite orbital situation problems solver [5] 
were developed. The two solvers are included in simulation program system which development is 
under progress [6]. The two solvers are based on pool of threads program model [3]. 

In the present article is shown an approach to universalization of the subroutine for pool of 
threads control. 

 
Problem statement 
 

Multi-satellites space mission simulations demand solving of different types of problems. 
Some of them are: 

− integration of motion of satellites and other objects; 
− situation analysis for establishing time intervals when different specific conditions are 

fulfilled, related to satellite experiments and other activities;  
− simulation of the work of scientific instruments and measurements, active experiments; 
− charged particles motion; 
− thermodynamics and electro-discharging problems. 
Numerical integration of satellites motions equations, as well as solving variety of multi-

satellite situation problems are related to irregular calculations. The reasons are different:  
− selection of different integration methods for different segments for each of satellite orbits 

depending on local orbital curvature and velocity; 
− different force models for each of satellites depending on type of orbit; 
− different situation conditions are met on different segments of the satellite orbits. 
The efficiency of parallel calculations depends on partitioning of all task to subtask. A problem 

appears when calculations are irregular, because then subtasks are uneven. A good choice of parallel 
calculations scheduling is to apply pool of thread program model.  

Due to the above reasons, the amount of calculations for every step in simulation time may be 
different. The analysis discloses the spatial and temporal modality of the irregularity of the 
calculations. 

In addition to optimization, parallel algorithms are applied in case of large amount of 
calculations. Implementation of threads parallelism and dynamic scheduling of calculations based on 
pool of threads program model are effective approaches to irregular calculations. 

The development of multi-physic applications includes different kind of solvers, based on “pool 
of threads” program model and their simultaneous execution leads to the presence in the processor 
cache storages of similar, close in semantics codes. For example, the developed program model 
“union of pools of threads” aims simultaneous execution of various solvers [7]. A minimization of the 
size of execution code is as important as its simplification. The application of universal tools is helpful 
on the stages of development and support. 

The two developed solvers, the one for satellites motion integration and other for situation 
problems solving, use analogous subroutines for control of the threads of each solver/pool. Each 
solver is based on different code, organized with different subroutines and uses data with different 
structures and semantics. The list of actual variables for each solver reflects his specifics. Different 
numbers of subroutine names are given to actual solver, which additional expands his potentialities.  

The developed “pool of threads” program model is synchronized with parent thread and works 
“step by step” in simulation time. Threads are started and work competitively while exhaust the 
available tasks. Then everything is repeated for the next step of simulation time. Several pools of 
threads are controlled in the frame of the model “union of pools” [7]. When one solver finishes 
attached problem “its” threads release processor cores, which are used further from additionally 
activated threads of other solver, which participates in the union. Subroutines for dynamic parallel 
calculations scheduling with almost equal codes are in the computer storage, when several solvers are 
executed simultaneously.This can lead to waste of memory and possibly affect the execution time. 

The subroutines for dynamic scheduling and control of the threads are called from buffer 
subroutines, which transfer to solvers all data necessary for control and processing [4, 5]. 
Furthermore, these buffer subroutines pass to solvers one or more names of subroutines. One 
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additional name of subroutine, containing the code describing right hand equation system, is passed to 
parallel integrator of ordinary differential equation systems [4]. So, two actual integrators can work with 
different motion models. Furthermore, integration methods could be changed too. 

 
New solution 

The new solution is achieved through polymorphism - a possibility for using one subroutine 
name calling different subroutines according to specifics of their arguments. Figure 1a shows definition 
of the generic name UPC (Universal Pool Control) in the frame of fortran 95 standard. Two subroutine 
names Pool_threads_Control_1 and Pool_threads_Control_2 are used for the two developed 
solvers respectively - parallel ordinary differential equation systems integrator and parallel situation 
problems solver. 

 
Fig. 1 a). Definition of polymorphic name UPC, which will substitute the names Pool_threads_Control_1 and 

Pool_threads_Control_2; b) and c) define templates of descriptors of two solvers. 
 
The lists of arguments of subroutines Pool_threads_Control_1 and 

Pool_threads_Control_2 contain two groups of arguments. One of them is fully identical for the two 
solvers and it is used for pool’s control. The other group of arguments is specific for each solver and 
varies in number and semantic. Instead the second group of arguments, structure containing them or 
their addresses is passed to subroutine UPC. Figure 1b,c shows versions of structures containing 
arguments for each of the two developed solvers. The name of particular solver is passed as 
argument to subroutine UPC too. Furthermore, each solver can receive additional subroutine name 
which must be used in specific current variant of the solver. This name is passed as additional 
argument to subroutine UPC. The possibility for using of additional subroutines is achieved by buffer 
subroutines [4, 5]. The names of these buffer subroutines are used as first subroutines by threads 
creation. The buffer subroutines accept values and addresses of all arguments necessary for each 
solver and contain specific for each solver additional subroutine names. While the application of 
structures, containing specific for solvers arguments, resolves part of the problem, the necessity to 
transmit a different number of subroutine names remains. 

MODULE      RN  
      … 
  type      task_descriptor_template_integrator                                 b). user defined type containing parameters necessary 
   integer       num_obj,num_equestions                                                for integrator                         
   integer       adr1,adr2 
   integer       adr_Grv_model,len_Grv_model 
   character     izbor*1 
  end type  task_descriptor_template_integrator 
! 
  type      task_descriptor_template_situations                                 c). user defined type containing parameters necessary 
   integer       num_sat                                                                           for situation processor  
   integer       t_adr,dt_adr,xvn_adr,xvk_adr 
   integer       max_num_sit,num_sit_prob 
   integer        sci_problem_adr,len_sci_task 
   integer       TrajectParam_adr,TrajectParam_len 
  end type  task_descriptor_template_situations 
      … 
   INTERFACE      UPC                                                                 a). definition of polymorphism  
    SUBROUTINE      Pool_threads_Control_1(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,lgranul, & 
                                                                            rkfasd_UPC,task_descriptor_adr,numobj,pertur) 
      external                              rkfasd_UPC,pertur 
      integer                               th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local(4),lgranul 
      integer                                               task_descriptor_adr,numobj 
    END SUBROUTINE  Pool_threads_Control_1 
  
   SUBROUTINE      Pool_threads_Control_2(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,lgranul, & 
                                         Psitanal_UPC,task_descriptor_adr,num_sit_prob) 
      external                              Psitanal_UPC 
      integer                               th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local(4),lgranul 
      integer                                            task_descriptor_adr,num_sit_prob 
    END SUBROUTINE  Pool_threads_Control_2 
  END INTERFACE  UPC 
      … 
END MODULE  RN 
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Fig. 2. Buffer subroutines where the two solvers are called by polymorphic name UPC and using the two 
structures from figure 1, containing specific for each of the solvers arguments. 

 
Figure 2 illustrates fragments of the buffer subroutines calling the two solvers. The calling of 

subroutine UPC in the two cases concerning each of the solvers is shown. In our case the names 
Pool_threads_Control_1 and Pool_threads_Control_2 are synonyms which are two entry points of 
same subroutine. The two entry points of the subroutine allow to be called with different number and 
semantic parameters. In our case the number of parameters is reduced through application of specific 
structure, explained above. 

Other problem is related to calling of the given solver from pool of thread control subroutine, 
because every solver has specific list of actual arguments. One part of these arguments is related to 
pool of thread control and other part to processing data, model parameters or initial conditions. Third 
part of arguments represents names of subroutine passed to the solver. One of the names is 
mandatory - this is the name of the solver called from pool of threads control subroutine and the 
number of other names is according to the specifics of the solver. While the first groups of arguments 
from the list can be packed in user defined structure, this is not possible for the names of subroutines 
in the frame of fortran 95. Therefore, they are placed at the end of the list of actual parameters. Some 
variable names are reserved at the end of the list of arguments of the solver, which can be interpreted 
eventually from the solver as names of subroutines or functions. 

The name “solver” is in the list of formal arguments of the subroutine for pool of threads 
control, shown on the figure 3. The actual name of the solver (after linker generates the executable) is 
address, set in the respective buffer subroutine (figure 2). 

 
Conclusion 
 

The proposed unification of the pool of thread control subroutine for application in different 
solvers simplifies the routines in the frame of multi-physic applications, reducing to only one subroutine 
for all different solvers. 

Assigning a name of a subroutine (function) to the component of structure is possible in the 
newest versions of fortran (fortran 2003). 

SUBROUTINE      SatelliteIntegratorUPC(th_id_num) 
   USE  RN, only: perturb,UPC 
      external                   pertur,rkfasd_UPC, task_descriptor_template_integrator 
      … 
      type (task_descriptor_template_integrator) task_descriptor 
      … 
      task_descriptor%num_obj           = numobj;                task_descriptor%num_equestions= 6 
      task_descriptor%adr1                  = adr1;                     task_descriptor%adr2                   = adr2 
      task_descriptor%adr_Grv_model= adr_Grv_model;   task_descriptor%len_Grv_model = len_Grv_model 
      … 
     CALL  UPC(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,lgranul, & 
                             rkfasd_UPC,task_descriptor_adr,numobj,pertur) 
 
END SUBROUTINE  SatelliteIntegratorUPC ! Universal Pool of threads Control 

SUBROUTINE      SituationProcessorUPC(th_id_num) _situations 
  USE RN, only:UPC, task_descriptor_template_situations 
     external       Psitanal_UPC 
      … 
      type (task_descriptor_template_situations) task_descriptor 
      … 
  task_descriptor%num_sat              = num_sat 
  task_descriptor%t_adr                   = t_adr;                         task_descriptor% dt_adr               = dt_adr 
  task_descriptor%xvn_adr              = xvn_adr;                    task_descriptor%xvk_adr             = xvk_adr 
  task_descriptor%max_num_sit      = max_num_sit;           task_descriptor%num_sit_prob    = num_sit_prob 
  task_descriptor%sci_problem_adr = sci_problem_adr;     task_descriptor%len_sci_task       = sci_task_len  
  task_descriptor%TrajectParam_adr= TrajectParam_adr;   task_descriptor%TrajectParam_len= TrajectParam_len; 
 
  CALL  UPC(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,granule, & 
                          Psitanal_UPC,local_task_descriptor_adr,local_num_sit_prob)  
 
END SUBROUTINE  SituationProcessorUPC 
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                              Fig. 3. Unified subroutine which is used in the two developed solvers.  

Additional investigations are necessary to determine the influence of the presented unification 
on run-time efficiency. 
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SUBROUTINE      Pool_threads_Control_1(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par,granule, & 
                                                                         Solver,task_descriptor_adr,num_tasks,RHFun) 
 USE  DFmt 
 USE  RN 
ENTRY                   Pool_threads_Control_2(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par,granule, & 
                                                                         Solver,task_descriptor_adr,num_tasks ) 
   integer                            th_id_num,            ha_1,adr_glb_counter,thread_par(4),granule 
   integer                                                                                                 task_descriptor_adr 
   integer, automatic ::  loc_ha_1,loc_counter,loc_counter0 
   integer                glb_counter 
  POINTER(adr_glb_counter,glb_counter) 
 
              ha_beg= thread_par(3);               ha_end= thread_par(4) 
           loc_ha_1= ha_1 
 DO WHILE(.true.); 
 
   k=  WaitForSingleObject(ha_beg,WAIT_INFINITE) ! Event for running of the thread 
 
   DO WHILE(glb_counter.LT. num_tasks)                      
      k= WaitForSingleObject(loc_ha_1,WAIT_INFINITE); 
      obj_remain= num_tasks-glb_counter 
 IF(obj_remain.GT.granule.AND.granule.GT.1) THEN  
     loc_counte0= glb_counter+1;               ! increment for serial subtask 
     glb_counter= glb_counter + granule     
                  k= SetEvent(loc_ha_1)                          ! Allows others threads to get tasks  
                   DO  loc_counter=loc_counte0,loc_counte0+ granule-1  
        IF(loc_counter.GT. num_tasks) EXIT 
    loc_adr= adr + (loc_counter-1)*adr_len; 
                            CALL  Solver(loc_counter,task_descriptor_adr,num_tasks,th_id_num,RHFun) 
    END DO 
                    ELSE 
     glb_counter= glb_counter + 1;         ! increment for serial subtask 
     loc_counter= glb_counter;                ! remember in thread’s local storage 
                                     k= SetEvent(loc_ha_1)   ! Allows others threads to get tasks  
     IF(loc_counter.GT. num_tasks) EXIT 
                              loc_adr= adr + (loc_counter-1)*adr_len; 
             CALL  Solver(loc_counter,task_descriptor_adr,num_tasks,th_id_num,RHFun) 
 
                   ENDIF 
  END DO 
   k= ResetEvent(ha_beg) ! Preparation of the event for next step in the time 
                  k=     SetEvent(ha_end) ! This event signals about finish of the thread 
 END DO; 
 
END SUBROUTINE  Pool_threads_Control_1 


