S E S 2 016
Twelfth Scientific Conference with International Participation
SPACE, ECOLOGY, SAFETY
2 — 4 November 2016, Sofia, Bulgaria

UNIFICATION OF “POOL OF THREADS” CONTROL IN THE FRAMES
OF DIFFERENT PARALLEL SOLVERS

Atanas Atanassov

Space Research and Technology Institute — Bulgarian Academy of Sciences
e-mail: At_M_Atanassov@yahoo.com

Keywords: parallel calculations, pool of threads model; multi-physic models simulations.

Abstract: Simulation of space missions at various stages of their preparation and implementation is
essential. Possibilities for application of detailed models for presentation of various aspects of prepared
experiments are created with development of computer technologies and the advent of multi-core processors.
More versatile and more detailed computer simulations of space missions require the development and
implementation of appropriate software for more efficient use of multicore processors.

The application of computational threads is convenient approach to perform parallel computing. The
"pool of threads" is a means for dynamic scheduling of calculations when solving irregular computational
problems, related to complex calculation models, which vary in the course of simulation time. This programming
model achieves optimal distribution of tasks among the threads, which assure high efficiency of computing
systems.

Variants of "pool of threads" model for developed solvers are realized. An unified approach and program
realization which are applicable in a variety of solvers are proposed in the present work. A simplification of the
program code by development of complex program systems which include different solvers is attainable by this
approach. This achieves a simplification of the programming code when develop complex software systems
including various solvers.

YHAOULIMPAHE HA YINPABJIEHUETO HA MNYJ OT TPEAOBE 3A PA3JIMNYHU
NAPAJIENNTHN NU3YUCITIUTENTHU CPEACTBA

ATtaHac AtaHacoB

UHecmumym 3a kocMudecku uscnedeaHusi U mexHonoauu — brrzapcka akademusi Ha Haykume
e-mail: At_M_Atanassov@yahoo.com

Pestome: Cumynayusima Ha KOCMUYECKU MUCUU Ha pasfiudHu emanu om msixHama rodsomoeka u
nposexdaHe e om cbujecmseHo 3HavyeHue. C pa3sumuemo Ha KOMMIOMbPHUME MEXHOI02UU U Haenu3aHemo
Ha MHO20-si0peHUme rnpouecopu ce cb3fasa 6b3MOXHOCMMA 3a npunazaHe Ha OemalsnHU Mmodenu 3a
npedcmassiHe Ha pa3nuyHU acrnekmu, cucmemu (nodcucmemu) npomudawume npouecu. lMo-pasHocmpaHHOMO
u no-0emadlsiHo onucaHue Ha peanHume efieMeHmuU Ha KOCMUYeckume MUcCUU U KOMIIOMBbPHOMO CuMenupaHe
usuckea paspabomkama U npunazeHemo Ha CbOMEemHU rnpospamHU cpedcmea 3a Mo-eheKmueHOmMo
u3ron3eaHe Ha MHO20si0peHuUme fMpoyecopu.

lMpunacaHemo Ha usduciumenHu mpedoge e ydobeH nodxod 3a usebpweaHe Ha napanesHu
usyucneHusi. Modenbm “nyn om mpedose” e cpedcmeo 3a OUHAMUYHO MflaHupaHe Ha u3ducrieHusma rnpu
pewasaHe Ha HepeaysipHU u34ucnumenHu npobnemu, cebp3aHu ¢ MOOeIU CII0XKHOCMMa Ha U34ucreHusima no
Koumo ce MeHsIm & cumynayuoHHomo epeme. C mosu npospameH Modes ce nocmuza OnMuUMasHO
paspedenieHue Ha 3adaqdume o mpedogeme C Koemo ce [oddbpxa 8ucoka egekmumMHoOCm Ha
usqucrumesnHume cucmemu.

PaspabomeHu ca eapuaHmu Ha modena “ryn om mpedoee” 3a pa3pabomeHume Ooceza corneepu. B
Hacmosiwjama paboma ce npednaza eOuHeH MoOX00 U npozspamHa peanusayusi Kosimo e fpumoxuma npu
pasnuyHu coneepu. C moea ce nocmuea yrnpocmsieaHe Ha rpoepaMHusi KOO rpu pa3pabomka Ha CrioXeHU
rpoepaMHu cucmemu 8K/IrYsawu pasiuyHU coneepu.

Introduction

Computer simulations are important tool for design at different stages of space mission
preparation and implementation [1, 2]. The modern solution of different kinds of problems demands
detailed simulations and a lot of computer time.

42

mailto:At_M_Atanassov@yahoo.com
mailto:At_M_Atanassov@yahoo.com

The present development of computer technologies provides great possibilities for access to
power multi-core processors. The use of these processors requires previously developed and
appropriately parallelized an algorithms.

Parallelization based on threads is applied to problems having large dimensions. An effective
control and dynamic scheduling of parallel calculations is achieved through application of pool of
threads program model [3].

Algorithms and program tools for space mission end experiments simulation are under
development at branch of SRTI, BAS in Stara Zagora. Parallel ordinary differential equation system
integrator for satellite orbits propagation [4] and parallel satellite orbital situation problems solver [5]
were developed. The two solvers are included in simulation program system which development is
under progress [6]. The two solvers are based on pool of threads program model [3].

In the present article is shown an approach to universalization of the subroutine for pool of
threads control.

Problem statement

Multi-satellites space mission simulations demand solving of different types of problems.
Some of them are:

— integration of motion of satellites and other objects;

— situation analysis for establishing time intervals when different specific conditions are

fulfilled, related to satellite experiments and other activities;

— simulation of the work of scientific instruments and measurements, active experiments;

— charged particles motion;

— thermodynamics and electro-discharging problems.

Numerical integration of satellites motions equations, as well as solving variety of multi-
satellite situation problems are related to irregular calculations. The reasons are different:

— selection of different integration methods for different segments for each of satellite orbits

depending on local orbital curvature and velocity;

— different force models for each of satellites depending on type of orbit;

— different situation conditions are met on different segments of the satellite orbits.

The efficiency of parallel calculations depends on partitioning of all task to subtask. A problem
appears when calculations are irregular, because then subtasks are uneven. A good choice of parallel
calculations scheduling is to apply pool of thread program model.

Due to the above reasons, the amount of calculations for every step in simulation time may be
different. The analysis discloses the spatial and temporal modality of the irregularity of the
calculations.

In addition to optimization, parallel algorithms are applied in case of large amount of
calculations. Implementation of threads parallelism and dynamic scheduling of calculations based on
pool of threads program model are effective approaches to irregular calculations.

The development of multi-physic applications includes different kind of solvers, based on “pool
of threads” program model and their simultaneous execution leads to the presence in the processor
cache storages of similar, close in semantics codes. For example, the developed program model
“union of pools of threads” aims simultaneous execution of various solvers [7]. A minimization of the
size of execution code is as important as its simplification. The application of universal tools is helpful
on the stages of development and support.

The two developed solvers, the one for satellites motion integration and other for situation
problems solving, use analogous subroutines for control of the threads of each solver/pool. Each
solver is based on different code, organized with different subroutines and uses data with different
structures and semantics. The list of actual variables for each solver reflects his specifics. Different
numbers of subroutine names are given to actual solver, which additional expands his potentialities.

The developed “pool of threads” program model is synchronized with parent thread and works
“step by step” in simulation time. Threads are started and work competitively while exhaust the
available tasks. Then everything is repeated for the next step of simulation time. Several pools of
threads are controlled in the frame of the model “union of pools” [7]. When one solver finishes
attached problem “its” threads release processor cores, which are used further from additionally
activated threads of other solver, which participates in the union. Subroutines for dynamic parallel
calculations scheduling with almost equal codes are in the computer storage, when several solvers are
executed simultaneously.This can lead to waste of memory and possibly affect the execution time.

The subroutines for dynamic scheduling and control of the threads are called from buffer
subroutines, which transfer to solvers all data necessary for control and processing [4, 5].
Furthermore, these buffer subroutines pass to solvers one or more names of subroutines. One

43

additional name of subroutine, containing the code describing right hand equation system, is passed to
parallel integrator of ordinary differential equation systems [4]. So, two actual integrators can work with
different motion models. Furthermore, integration methods could be changed too.

New solution

The new solution is achieved through polymorphism - a possibility for using one subroutine
name calling different subroutines according to specifics of their arguments. Figure 1a shows definition
of the generic name UPC (Universal Pool Control) in the frame of fortran 95 standard. Two subroutine
names Pool _threads_Control_1 and Pool _threads_Control_2 are used for the two developed
solvers respectively - parallel ordinary differential equation systems integrator and parallel situation
problems solver.

MODULE RN

type task_descriptor_template_integrator b). user defined type containing parameters necessary
integer num_obj,num_equestions for integrator
integer adrl,adr2
integer adr_Grv_model,len_Grv_model
character izbor*1
end type task_descriptor_template_integrator
|
type task_descriptor_template_situations c). user defined type containing parameters necessary
integer num_sat for situation processor
integer t_adr,dt_adr,xvn_adr,xvk_adr
integer max_num_sit,num_sit_prob
integer sci_problem_adr,len_sci_task
integer TrajectParam_adr, TrajectParam_len
end type task_descriptor_template_situations

IN;I.'ERFACE UPC a). definition of polymorphism
SUBROUTINE Pool_threads_Control_1(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,Igranul, &
rkfasd_UPC,task_descriptor_adr,numobj,pertur)

external rkfasd_UPC,pertur
integer th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local(4),Igranul
integer task_descriptor_adr,numobj

END SUBROUTINE Pool_threads_Control_1

SUBROUTINE Pool_threads_Control_2(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,Igranul, &
Psitanal_UPC,task_descriptor_adr,num_sit_prob)

external Psitanal_UPC
integer th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local(4),Igranul
integer task_descriptor_adr,num_sit_prob

END SUBROUTINE Pool_threads_Control_2
END INTERFACE UPC

END MODULE RN

Fig. 1 a). Definition of polymorphic name UPC, which will substitute the names Pool_threads_Control_1 and
Pool_threads_Control_2; b) and c¢) define templates of descriptors of two solvers.

The lists of arguments of subroutines Pool_threads_Control_1 and
Pool_threads_Control_2 contain two groups of arguments. One of them is fully identical for the two
solvers and it is used for pool's control. The other group of arguments is specific for each solver and
varies in number and semantic. Instead the second group of arguments, structure containing them or
their addresses is passed to subroutine UPC. Figure 1b,c shows versions of structures containing
arguments for each of the two developed solvers. The name of particular solver is passed as
argument to subroutine UPC too. Furthermore, each solver can receive additional subroutine name
which must be used in specific current variant of the solver. This name is passed as additional
argument to subroutine UPC. The possibility for using of additional subroutines is achieved by buffer
subroutines [4, 5]. The names of these buffer subroutines are used as first subroutines by threads
creation. The buffer subroutines accept values and addresses of all arguments necessary for each
solver and contain specific for each solver additional subroutine names. While the application of
structures, containing specific for solvers arguments, resolves part of the problem, the necessity to
transmit a different number of subroutine names remains.

44

SUBROUTINE SatellitelntegratorUPC(th_id_num)
USE RN, only: perturb,UPC
external pertur,rkfasd_UPC, task_descriptor_template_integrator

type (task_descriptor_template_integrator) task_descriptor
task_descriptor%num_obj = numobyj; task_descriptor%num_equestions= 6
task_descriptor%adrl =adrl; task_descriptor%adr2 =adr2

task_descriptor%adr_Grv_model=adr_Grv_model; task_descriptor%len_Grv_model = len_Grv_model

(.Z.ALL UPC(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,Igranul, &
rkfasd_UPC,task_descriptor_adr,numobj,pertur)

END SUBROUTINE SatelliteIntegratorUPC ! Universal Pool of threads Control

SUBROUTINE SituationProcessorUPC(th_id_num) _situations
USE RN, only:UPC, task_descriptor_template_situations
external Psitanal_UPC

type (task_descriptor_template_situations) task_descriptor

task_descriptor%num_sat = num_sat

task_descriptor%t_adr =t_adr; task_descriptor% dt_adr =dt_adr
task_descriptor%xvn_adr =xvn_adr; task_descriptor%xvk_adr = xvk_adr
task_descriptor%max_num_sit = max_num_sit; task_descriptor%num_sit_prob = num_sit_prob
task_descriptor%sci_problem_adr = sci_problem_adr; task_descriptor%len_sci_task ~ =sci_task_len

task_descriptor%TrajectParam_adr= TrajectParam_adr; task_descriptor%TrajectParam_len= TrajectParam_len;

CALL UPC(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par_local,granule, &
Psitanal_UPC,local_task_descriptor_adr,local_num_sit_prob)

END SUBROUTINE SituationProcessorUPC

Fig. 2. Buffer subroutines where the two solvers are called by polymorphic name UPC and using the two
structures from figure 1, containing specific for each of the solvers arguments.

Figure 2 illustrates fragments of the buffer subroutines calling the two solvers. The calling of
subroutine UPC in the two cases concerning each of the solvers is shown. In our case the names
Pool_threads_Control_1 and Pool_threads_Control_2 are synonyms which are two entry points of
same subroutine. The two entry points of the subroutine allow to be called with different number and
semantic parameters. In our case the number of parameters is reduced through application of specific
structure, explained above.

Other problem is related to calling of the given solver from pool of thread control subroutine,
because every solver has specific list of actual arguments. One part of these arguments is related to
pool of thread control and other part to processing data, model parameters or initial conditions. Third
part of arguments represents names of subroutine passed to the solver. One of the names is
mandatory - this is the name of the solver called from pool of threads control subroutine and the
number of other names is according to the specifics of the solver. While the first groups of arguments
from the list can be packed in user defined structure, this is not possible for the names of subroutines
in the frame of fortran 95. Therefore, they are placed at the end of the list of actual parameters. Some
variable names are reserved at the end of the list of arguments of the solver, which can be interpreted
eventually from the solver as names of subroutines or functions.

The name “solver” is in the list of formal arguments of the subroutine for pool of threads
control, shown on the figure 3. The actual name of the solver (after linker generates the executable) is
address, set in the respective buffer subroutine (figure 2).

Conclusion

The proposed unification of the pool of thread control subroutine for application in different
solvers simplifies the routines in the frame of multi-physic applications, reducing to only one subroutine
for all different solvers.

Assigning a name of a subroutine (function) to the component of structure is possible in the
newest versions of fortran (fortran 2003).

45

SUBROUTINE Pool_threads_Control_1(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par,granule, &
Solver,task_descriptor_adr,num_tasks,RHFun)

USE DFmt
USE RN
ENTRY Pool_threads_Control_2(th_id_num,num_threads,ha_1,adr_glb_counter,thread_par,granule, &
Solver,task_descriptor_adr,num_tasks)
integer th_id_num, ha_1,adr_glb_counter,thread_par(4),granule
integer task_descriptor_adr
integer, automatic :: loc_ha_1,loc_counter,loc_counter0
integer glb_counter
POINTER(adr_glb_counter,glb_counter)
ha_beg= thread_par(3); ha_end=thread_par(4)

loc_ha_1=ha_1
DO WHILE(.true.);

k= WaitForSingleObject(ha_beg,WAIT_INFINITE) ! Event for running of the thread

DO WHILE(glb_counter.LT. num_tasks)
k= WaitForSingleObject(loc_ha_1,WAIT_INFINITE);
obj_remain= num_tasks-glb_counter
IF(obj_remain.GT.granule.AND.granule.GT.1) THEN

loc_counteO= glb_counter+1; 'increment for serial subtask
glb_counter= glb_counter + granule
k= SetEvent(loc_ha_1) I Allows others threads to get tasks

DO loc_counter=loc_counte0,loc_counte0+ granule-1
IF(loc_counter.GT. num_tasks) EXIT
loc_adr=adr + (loc_counter-1)*adr_len;
CALL Solver(loc_counter,task_descriptor_adr,num_tasks,th_id_num,RHFun)

END DO
ELSE
glb_counter=glb_counter + 1; 'increment for serial subtask
loc_counter= glb_counter; ! remember in thread’s local storage

k= SetEvent(loc_ha_1) ! Allows others threads to get tasks
IF(loc_counter.GT. num_tasks) EXIT
loc_adr=adr + (loc_counter-1)*adr_len;
CALL Solver(loc_counter,task_descriptor_adr,num_tasks,th_id_num,RHFun)

ENDIF
END DO
k= ResetEvent(ha_beg) ! Preparation of the event for next step in the time
k= SetEvent(ha_end) ! This event signals about finish of the thread
END DO;

END SUBROUTINE Pool_threads_Control_1

Fig. 3. Unified subroutine which is used in the two developed solvers.

Additional investigations are necessary to determine the influence of the presented unification
on run-time efficiency.

References:

1. Wertz, J.R., Larson, W.J., 1999. Space Mission Analysis and Design, third ed. Microcosm Press, Kluwer
Academic Publishers.

2. Eickhoff, J., 2009. Simulating Spacecraft Systems, vol. 353. Springer-Verlag, Berlin Heidelberg.

3. Rauber, T., and Gudula Ringer. Parallel programming: For multicore and cluster systems. Springer Science &
Business Media, 2013.

4. Atanassov, A., 2014, Parallel, Adaptive, Multi-Object Trajectory Integrator for Space Simulation Applications,
Adv. Sp. Res., v. 54, Ne 8, p. 1581-1589.

5. Atanassov, A.M., Parallel Satellite Orbital Situational Problems Solver for Space Missions Design and Control.
Adv. Sp. Res., v. 58, Ne 9, p. 1819-1826.

6. Atanassov, A., Program System for Space Missions Simulation — First Stages of Projecting and Realization, In
Proceedings of SES 2012, 209-214, 2013.

7. Atanassov, A., Method of Thread Management in a Multi-Pool of Threads Environments, In Proceedings of
SES 2014, 241-246, 2015.

46

